Investigation Two – Sum of the Parts (Physical Change)

Standard I Students will understand that chemical and physical changes occur in matter. Objective 1 Describe that matter is neither created nor destroyed even though it may undergo change. Intended Learning Outcomes 1. Use science process and thinking skills 4. Communicate effectively using science language and reasoning.		
Background Information "No matter how parts of an object are assembled, the weight of the whole object is always the same as the sum of the parts; and when a thing is broken into parts, the parts have the same total weight as the original thing. It is not obvious elementary students that a whole weighs the same as the sum of its parts." (The Structure of Matter: 3-5; AAAS Benchmarks) The following experiences will h your students to understand this relationship between wholes and their parts. These activities are best done by small groups of 3-5 students. It is import that each group has access to a scale that can accurately measure 1-gram increment If scales are not available, the activities can be done as a teacher demonstration.	e to elp rtant ents.	
Pre-Assessment/Invitation to Learn Show the class a ball of modeling clay and have them name its physical properties. List their responses on the board. Remind students that weight is a physical property. Allow students to hold the ball and then have them make estimates of the clay's weight. Record their estimates on the board. Weigh the ball of clay and compare it to their estimates. Record the clay's weight on the board.	Materials • 1 package modeling clay • Scale	
From the large ball of clay, break off a smaller ball for each team and hav The class list the properties of the smaller balls. <i>(Students should notice that all properties of the clay are the same except the size and weight of each ball has changed.)</i> Have each team weigh their ball of clay and reports its weight. Recon the weights on the board. Collect all the clay and mold it back into a large ball. Ask the teams to put their heads together and decide what they think the large ba of clay weighs. Have teams report the weight and explain how they arrived at it. Record responses. Weigh the clay and compare the weight to the teams' guesses and the weight of the original ball of clay. (The re-formed ball of clay will probably weigh less than the original ball because some of the clay will remain of the students hands or desk tops. Ask the class to explain why the re-formed ball weighs less.) Tell the class they are going to further investigate the relationship between the weight of the whole and its parts.	/e the rd .ll S	

between the weight of the whole and its parts.

Instructional Procedure

Cooperative teams of 3-5 should complete the following procedures:

- 1. Build an object using the materials provided. Make sure your completed
- object can be placed on the scales to be weighed.
- 2. Place your object on the scale and find its weight. Record the object's weight in your journal.
 - 3. Take your object apart. Do not mix up the pieces used to build the object with extra building pieces.
- 4. Place all of the pieces used to build the object on the scale and find their total weight. (You may need to place the pieces in a bag to weigh them. If you do, be sure to weigh the bag first so you can subtract its weight from the total weight.) Record the total weight of the pieces.
- 5. Write a mathematical equation that shows what you have learned from this activity, *such as: total weight of the pieces = total weight of object.* Write a statement that explains how the weight of the parts relates to the weight of the whole.
- 6. After students have completed the activity, have the teams share with the class what they have learned.

Curriculum Extensions

Math –

At the beginning of the day, give each student a new pencil. Weigh one pencil and calculate the total weight of all the pencils. Have students sharpen their pencils in the same pencil sharpener and use only that pencil during the day. At the end of the day collect all the pencils and the shavings from the sharpener. Weigh the shavings and the pencils. What parts of the pencils could not be collected? (The graphite used for writing and the erasers used for removing graphite). Challenge students to write an equation to calculate the weight of the graphite and erasers used during the day. (Standard 2, Objective 2)

willing to bring some from home for their teams to use.)
Student worksheet "Sum of the

Parts"

Materials

Scale

similar

building

nex are unavailable,

may be

•

For each team:

A collection of Legos, K-

nex, or other

materials, (If

your students

Legos or K-

Assessment Suggestions

- Discuss the statement: "The weight of the parts is always equal to the weight of the whole." Is this statement always true? Can you think of a time when it may not be true? Can it be tested? How? What are some investigations that you could do to test the statement? You may wish to allow students to set up other investigations to test the statement.
- Check for students' accuracy on the worksheet and student journal.

Reference to Assessment Section:

Unit Test	Multiple Choice	Constructed Response	Performance Test
1	1, 2, 3		
2	1, 2, 4		

Sum of the Parts

 Name
 Team

 Date
 Object Weighed

 Actual weight of object
 Image: Comparison of the second sec

Equation

Write a paragraph telling what you did and what you learned during this activity.

_____ = ____

Write a statement to explain the relationship between the weight of the total object.