How Many? How Far? How Thick?

Standard III:

Students will understand that magnetism can be observed when there is an interaction between the magnetic fields of magnets or between a magnet and materials made of iron.

Objective 1:

Investigate and compare the behavior of magnetism using magnets.

Intended Learning Outcomes:

3. Understand Science Concepts and Principles.

Content Connections:

Language Arts VIII-6, Writing for different purposes; Math II-1, Predictions with Whole Numbers; Math V-1, Calculate Mean; Math IV-2, Measure in centimeters

Background Information

Students will conduct three related investigations concerning magnetic attraction and the relative strength of magnets in this activity. They will determine how many objects a magnet can hold and then determine if additional magnets will affect the overall magnetic force. Students will work with different kinds of magnets and find that magnetic force varies greatly among the varying types and is not necessarily related to the size of the magnet. Magnets are made of many different materials including iron and iron alloys. The force that a magnet exerts depends on many variables, including the condition of the magnet, the alignment of the magnetic domains that exist within it, its material make-up, etc. When magnets are combined, the magnets act as one magnet and will have an increase in force.

Students will also measure the distance a paper clip will move toward a magnet and then add magnets to see if the distance is affected. The distance that is observed represents the extent of the magnetic force; however, the magnetic force may extend beyond what is observed. Factors such as friction may affect the observations.

Students will finally investigate the effectiveness of magnetic force through materials of varying thicknesses. A magnet's force acts through space, and certain materials appear to be relatively transparent to a magnetic field. Science Standard III

Objective 1

Connections

Research Basis

- Jacobs, Struan, (2001). *Limits to problem solving in science*. EBSCO Publishing. Retrieved November 22, 2005, from <u>http://www.80-webl9.epnet.com.hal.weber edu:2200/</u> citation.asp?tb=l&: ug=sid+2EC21087%...
- Lee, Kam-Wah,&: Chin, Christine. (2000). Science teachers and problem solving in elementary schools in singapore. EBSCO Publishing. Retrieved December 12, 2005, from h1m:t/www 80web19.epnet.com hal.weber.edu:2200/cita tion.as.p7tb=1&: ug=sid+DC302EE2...

Classroom environments that provide opportunities for small groups of children to work together to solve problems tend to foster the development of problem-solving skills. Students should be given problems to consider and through the process of problem solving, thinking skills can be developed. Even though research shows that students should have these opportunities, these strategies are not being used in the majority of elementary and secondary classrooms.

Invitation to Learn

Begin this activity by demonstrating the "flying" paper clip (Attach a paper clip to a 12-18-inch piece of fishing line and tape one end to the desk. Pass a high powered magnet near it and pull it upward); or the "floating" magnet (Place several disk magnets on a dowel or pencil so that each is repelled from the one next to it); or allow the students to play with an Etch-A-SketchTM or a Magna DoodleTM or any other magnet-type game.

Instructional Procedures

This is a three-part discovery activity. The activities do not need to be completed in sequential order. The activity works better when completed with partners or in small groups of three to four; each person will record on their own paper.

Part I:

- 1. Have the students form a hook from a paper clip and then place it on the magnet. The magnetic force will hold the paper clip in place.
- 2. Using the *How Many? How Far? How Thick?* Observation Sheet, have students make predictions on how many paper clips the hook will hold before it falls from the magnet.
- 3. The students are now ready to follow directions from and make observations on their *How Many? How Far? How Thick?* Observation Sheet.

Materials

- □Various magnets (domino, disk, horseshoe, donut)
- Paper clips
- Centimeter ruler
- Paper
- Cardboard
- □Plastic
- □Wood
- □*How Many? How Far? How Thick?* Observation Sheet

Part II:

- 4. Have the students place a paper clip at one end of a 20centimeter line drawn on paper. Put a magnet at the other end.
- 5. Using the *How Many? How Far? How Thick?* Observation Sheet, have students make predictions on the distance at which a paper clip will be attracted to a magnet.
- 6. The students are now ready to follow directions from and make observations on the *How Many? How Far? How Thick?* Observation Sheet.

Part III:

- 7. Using the *How Many? How Far? How Thick?* Observation Sheet, have the students make predictions on the thickness through which magnetic force is observable using several different materials.
- 8. The students are now ready to follow directions from and make observations on the *How Many? How Far? How Thick?* Observation Sheet.
- 9. In all of the above activities, make sure sufficient time is given to allow the students to experiment with more than one magnet.
- 10. Time should also be given for students to record observations, thoughts and conclusions in their science journals.

Assessment suggestions

- *The How Many? How Far? How Thick?* Observation Sheet may serve as the best assessment tool. The correctness of the students' observations will help evaluate student performance.
- Teacher observations during student investigations will also serve as an assessment tool.

Family connections

• Have the students create a game of some kind using magnets. Bring the game back to school and have a magnet game sharing opportunity.

Additional Resources

Books

Electricity & Magnetism, by Dr. John B. Beaver &: Don Powers, Ph.D.; ISBN 1-58037-222-8

Magnets & Electricity, by Karen Lee Siepak; Carson-Dellosa Publishing Co.

Web sites

http://www.exploratorium.edu/snack/charge carry.html

http://www.howstuffworks.com

http://www.entenainment.howstuffworks.com/magna-doodle

How Many? How Far? How Thick? Observation Sheet

Part I: How Many?

1. Make a hook with one of the paper clips and hang it from one of the magnets.

Predict how many paper clips you think the magnet will hold before the clip falls off. Record this prediction on the table below.

- 2. Carefully place paper clips on the hook until the hook falls from the magnet. Record your data on the table below.
- 3. Repeat this three times making sure to record your data each time.
- 4. Repeat with two magnets, and then three. Make your predictions first, and then test the magnets three times and record your data in the table. You will average the numbers at the end of the experience.

Predict the number of paper clips that the magnet(s) will hold.	1 magnet	2 magnets	3 magnets
First trial			
Second trial			
Third trial			
Average number			

How many clips will the ma9net hold?

- 5. You are now ready to explore the magnetic forces of other kinds of magnets by repeating the experiment above. Record your observations here:
- 6. Based on your observations, what conclusions can you make about the force exerted by the different magnet combinations? Did adding magnets make a significant difference in the number of paper clips the magnet could hold? Did the number of clips vary between one kind of magnet and another kind?

Part II: How Far?

- 1. On a piece of paper, draw a line that is 20 centimeters long. Mark it at each centimeter. Place a paper clip at the other end of the line. Predict the distance at which the paper clip will be attracted to the magnet. Record this prediction on the table below.
- 2. Slowly, slide the magnet along the line you have drawn towards the paper clip. Stop moving the magnet when the paper clip attaches itself to the magnet. Record the distance in centimeters on the table below.
- 3. Repeat this three times making sure to record your data each time.
- 4. Repeat with two magnets, and then three. Make your predictions first, and then test the magnets three times and record your data in the table. You will average the numbers at the end of the experience.

Predict the distance that a paper clip moves.	1 magnet	2 magnets	3 magnets
First trial			
Second trial			
Third trial			
Average number			

How far will the dip move?

5. You are now ready to explore the magnetic forces of other kinds of magnets by repeating the experiment above. Record your observations here:

6. Based on your observations, what conclusions can you make about the magnetic force of different magnet combinations. Did adding magnets make a significant difference in the distance a paper clip would move? Did the distance vary between one kind of magnet and another kind?

Part III: How Thick?

- 1. Place a paper clip on one sheet of each material (paper, cardboard, wood) to see if a magnet held under the sheet will attract the paper clip.
- 2. Predict the thickness (3 sheets, 15 sheets, 25 sheets, etc.) through which the magnetic force will work. Record this prediction on the table below.
- 3. You will now test your prediction by adding sheets of the material, placing the paper clip on top and watching for the magnetic attraction from below.
- 4. Repeat with two other materials. Make your predictions first, and then test each material. Record your data on the table.

	Prediction of thickness	Actual thickness
lst material tested:		
2nd material tested:		
3rd material tested:		

How thick will it be?

5. You are now ready to explore the magnetic forces of other kinds of magnets by repeating the experiment above. Record your observations here:

6. Based on your observations, what conclusions can you make about the magnetic force of different magnet combinations.