Scientific Discovery

1. Purpose:

Reason for the investigation

2. Research:

Knowledge of the field studied

3. Hypothesis:

- Educated guess of outcome
- Explanation of why

4. Design Plan:

- Instructions
- Materials
- Variables identified
- Data gathering plan

5. Execution:

- Data gathered put in form of table or chart
- Line, bar, circle graph(s) also made
- Written data analysis

6. Interpretation:

- Interpretations and Conclusions
- Real world applications
- Knowledge gained

Engineering Design

1. Need:

Solving a problem

2. Research:

• Knowledge of the field studied

3. <u>Design Requirements:</u>

Identify the criteria and constraints

4. Design Plan:

- Beginning and alternative drawn designs
- Identification of a final design
- Instructions
- Materials
- Data gathering plan

5. Construction, Testing, Redesigning:

- Construct the prototype
- Test, gather, and analyze data
- Redesign—then test, gather, and analyze data
- Continue until the criteria & constraints are met

6. Reflection:

- A detailed account of your project to include:
 - Conclusions
 - Real world applications
 - Knowledge gained

Computer Design

1. Need:

Solving a problem

2. Research:

Knowledge of the field studied

3. Design Requirements:

Identify the criteria and constraints

4. Design Plan:

- Beginning and alternative written codes
- Identification of a final solution code
- Data gathering plan

5. Programing, Testing, Redesigning:

- Program the computer
- Test, gather, and analyze the data
- Redesign—then test, gather, and analyze data
- Surveys administered for others to test it
- Continue until the criteria & constraints are met

6. Reflection:

- A detailed account of your project to include:
 - Conclusions
 - Real world applications
 - Knowledge gained